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R H E O L O G I C A L  M O D E L  OF V O L U M E  S T R E T C H I N G  OF N E W T O N I A N  LIQUIDS 

S. V. Stebnovskll UDC 532.135:532.528 

An equation of state for a volumetrically stretched cavitatin9 liquid medium that holds in the 
entire span of  volume concentrations of bubbles ranging from cavitation nuclei to the stage of 
formation of a cellular foam structure is obtained based on a proposed macrorheological model. 
The dependence of the modulus of volume elasticity of a liquid on the volume concentration 
of bubbles is plotted, and a method for estimating the relazation time for tensile stresses in 
cavitatin9 liquid media is proposed. 

Since volume stretching of liquid media is always accompanied by development of cavitation, which 
leads to fragmentation of the medium in the case of unrestricted growth of cavitation bubbles, the need arises 
to create physical and mathematical models of such processes. 

It is known that, within the framework of the three-dimensional theory of linear viscoelasticity, the 
viscoelastic behavior of a medium is usually considered under conditions of pure tension and shear, and the 
results obtained enable one to develop a general theory. (In this approach, stress and strain tensors are grouped 
into isotropic tensors and deviators, and viscoelasticity relations are written for each case.) It is expedient to 
use this approach in developing a rheological model of cavitating liquid media as well. The author [1] derived 
a relaxation-type rheological equation of state that characterizes the behavior of liquid media containing 
disperse elements and cavitation bubbles, in the regime Of shear strains for any fixed value of the volume 
concentration of the bubbles a0. To create a mathematical model of volumetrically stretched liquid media, it 
is necessary to derive a rheological equation of state for the medium that depends on the varying (increasing 
in the process of volume stretching of the medium) concentration of cavitation bubbles in the entire range 
of its occurrence. Below, we consider a mechanical model for volumetrically stretched Newtonian liquids and 
derive a theological equation of state for these liquids. 

1. As has been shown [2-4], in the process of volume stretching, a liquid medium traverses a number 
of theological states because of the unrestricted growth of cavitation bubbles from an almost ideal fluid to the 
state of a viscoelastic medium. We consider the initial stage of stretching (a00 = 10-12-10 -4 < ~0 < I0 -l ) in 
which growth of the effective shear viscosity of the medium, which is caused by the presence of bubbles, is not 
yet taken into account, and the bubbles are assumed not to interact with one another and to exert an effect 
on each other only via the averaged field of pressures in the liquid. At this stage of the process, one can use 
the Iordanskii-Kogarko mathematical model [5, 6], which was constructed for an ideal incompressible fluid 
uniformly filled with spherical bubbles. The medium's compressibility is due to the bubbles' compressibility, 
the dynamics of which is described by the Lamb-Rayleigh equation. 

If a liquid matrix did not contain cavitation nuclei (a00 = 0), it would store elastic energy during 
volume stretching, as shown by the mechanical model in Fig. la. The time of partial relaxation of tensile 
stresses owing to restructuring of this medium at the molecular level, i.e., without a change in' volume, can 

be estimated by the formula [7] 

To = (o/(Koo - Ko), (1.1) 
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where (0 is the volume (second) viscosity of the liquid, and K0 and Koo are, respectively, the static and 
dynamic bulk moduli of the liquid without development of cavitation bubbles. This process can occur for 
De = To/At.  >> 1, where De is the Deborah number and At .  is the characteristic t ime of stretching of the 
medium [according to (1.1), To ~- 10 -1~ sec in the case of water]. If pulsed stretching of the medium occurs 
in the regime De < 1, cavitation bubbles begin to grow in the process of deformation: the elastic energy of 
the medium is expended on development of the cavitation process. 

The author [8] considered the problem of stretching a cylindrical water column containing cavitation 
nuclei along the axis of symmetry  within the framework of the Iordanskii-Kogarko model. The process occurred 
owing to an instantaneously applied constant acceleration. A dependence was obtained that allows one to 
estimate the time of relaxation of tensile stresses T, which is due to growth of cavitation bubbles in the plane 
of loading, i.e., in a liquid layer. According to the estimate for a00 = 10 -4, a radius of monodisperse cavitation 
nuclei tt0 = 10 -s  cm, and a tensile stress of -30  MPa, we have T = 6.3.10 -9 sec. 

Since T is always much shorter than the value attainable in experiments At . ,  Stanyukovich [9] and 
Chernobaev [10] used the assumption of instantaneous relaxation of tensile stresses. The essence of this 
assumption is that after a certain level of negative pressure is reached in the liquid, this pressure immediately 
relaxes and the cavitating liquid volume expands as a substance having no strength or viscosity. This model 
holds if the change in the rheological parameters (viscosity, elasticity, etc.) can be ignored in the process of 
the medium's deformation, as, for example, in problems of the dynamics of the cavitation zone for c~0 <~ 0.1. 

However, as was shown in [2-4], as a0 grows owing to an increase in the effective shear viscosity 
# a~d a decrease in the dynamic shear modulus Goo, the relaxation time of shear stresses A0 = ~/Goo 
increases. For example, for c~0 ~ s0. = 0.74-0.77 (the concentration of the limiting bubble packing), we have 
A0(~0)/A0(~0.) ~ 104. Later on, at the stage s0 > s0.,  the bubble system begins to be structured, namely, 
a cellular foam structure is formed, and the medium loses the property of fluidity, entering the state of a 
viscoelastoplastic body [1]. 

2. With the aforesaid taken into account, the mechanical model of a volumetrically stretched cavitating 
medium can be shown schematically, as is done in Fig. lb. Here the model of a pure liquid (Fig. la) is 
supplemented by the elements K3 and (1, which correspond to the bulk modulus /Ca and the effective bulk 
viscosity of the cavitating liquid. The model works as follows. If the rate of increase of the tensile stress is 
rather high, the resistance to displacement of the pistons (0 and (I is so great that at the initial moment 
these pistons can be regarded as nondeformable elements, and the deformation of the model is determined by 
the elasticity of the elements K1 = Koo - K0, K2 = K0 - IQ, and / /3  = K, ,  i.e., at the initial moment the 
resulting elasticity of the model K = KI + K2 + K3 = Koo corresponds to the dynamic bulk modulus of a 
pure liquid.' 

In Fig. 2, which is a qualitative illustration of the dependence of the tensile stresses ~v on the bulk 
tensile strains ev, this stage of the process corresponds to section 0-1, where the strain grows according to 
the law av = Kooev. Next, because, according to [11], for a bubble suspension we have ~1 > q'0, the spring Kl 
begins to unload first in the model shown in Fig. lb. The relaxation time of stresses in this stage is determined 
by formula (1.1). In Fig. 2, this process corresponds to section 1-2. 

After that, the piston ~'1 begins to move, thus unloading the spring K2, which corresponds to the loss 
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of elastic energy of the liquid matrix because of the expansion of the nuclei of cavitation bubbles and the 
divergent motion of the layers of liquid with shear viscosity ~0 that are joined to these nuclei. This relaxation 
stage of elastic tensile stresses in the medium corresponds to section 2-3 in Fig. 2. 

The subsequent volume stretching of the two-phase medium has an inertial character and occurs owing 
to growth of cavitation bubbles with retention of the volume of the liquid matrix, i.e., the springs I(1 and K2 
do not deform in the mechanical model but the element K3 continues to stretch, and the piston (1 continues 
to move. At this stage, the medium still possesses some elasticity owing to the counter pressure of the ambient 
atmosphere, the gas and vapor pressure in the bubbles, and the surface tension, which is incorporated in the 
spring's elasticity K3 = Ka in the mechanical model (Fig. lb). Section 3-4 in Fig. 2 corresponds to this stage. 
If a0 reaches the value a0. and the bubbles come into contact with one another, and the medium enters the 
state of a cellular foam skeleton for m0 > a0.. Thus, we have K3 -- K~(moi), where 0 < aoi < 1. We note that 
since the relaxation process in a pure liquid can end simultaneously with the onset of stress relaxation caused 
by expansion of cavitation bubbles, the total relaxation time of volumetric tensile stresses depends on all the 
viscous and elastic elements. 

3. Based on the mechanical model (Fig. lb), we construct a rheological equation of state for a 
volumetrically stretched liquid medium. 

If a v  and ev are the volumetric tensile stress and strain of the liquid medium, respectively, we have, 
according to the scheme in Fig. lb, 

where 

0.v = 0.1 + a2 ,  (3.1) 

al  = KaeV  = K.(el  + e2), a2 = a~ + a~, a~ = K 2 e l ,  
, . , 

el  = Q + Q ,  = K ,  e l ,  = (oOe~/Ot. 

It follows from the above relation that 

1 1 '~o', 

Hence, 

or  a~ ------ e l  + ~'0 

[ 0.2 = 0"2 +O"2 = K2 + + C1, 

and, expressing et with allowance for a2 = (10e2/Ot and r = el + ~2, we obtain 

( [  ( 1  1 ) - , ] - t  1 }- I  
0.2 = K2 + ~ + r  + r ev. 

(3.2) 

(3.3) 
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Having substi tuted (3.2) and (3.3) into (3.1), we have 

av = Ka~v + K2 + + Co + (1 ~v .  

From the above relation, with allowance for the fact that  K1 = Koo - K0, K2 = K0 - Ka, and To = 
(o/(Koo - Ko) and denoting T1 = ~l/(Ko - Ka), we obtain, after transformation, the following rheological 
equation of state for a volumetrically stretched liquid medium, which holds for a00 ~< a0i < 1: 

( 1  K o o - K a  ) av _ K o o g v + ( K o  K o o - K .  I ( ~  K~ 
b v +  ~o + ~oo--I-~a 7"1 bY+ToT1 ~o + K o - ~  T 1 ] ~ V + T - ~ I  sv" (3.4) 

Since K~ = Ka(a0i) and ~1 = r Eq. (3.4) can be solved numerically if the dependences of the rheological 
parameters of the med ium on the growth of the volume concentration of bubbles are found. 

4. We consider the bulk modulus of a bubbly suspension versus a0. 
The stage 0 ~< ao < a0..  As is known, the bulk modulus of a pure liquid 

K = - V d P / d Y  (4.1) 

characterizes its elasticity in the vicinity of a prescribed pressure. If the liquid contains a bubble, the balanced- 
state condition for the bubble can be written [7], under a given pressure in the liquid P = p0, as follows: 

p0 = pO + P2 - 27 / r  ~ (4.2) 

where pO and P2 are the pressures of the gas and saturated vapor in the bubble, respectively, r ~ is the bubble 
radius, and 7 is the surface tension of the liquid. According to (4.2), if the pressure in the liquid decreases 
to P~ < p0, the bubble radius will increase t o / ,  so that  z = rl/r 0 > 1. The  gas pressure in the bubble 
will decrease according to the law P~ = P~ whereas P2 will remain unchanged (in the expansion time 
of the bubble to the radius r ~, diffusion of liquid vapor through the bubble wall "equalizes" P2). Expressing 
pO = pO _ P2 + 27/r~ from (4.2), we write 

p,=p~+p2_2_~7 1 ( 2 7 ) _ 2 7  + P 2 .  

It follows that  

dP' = - 3  pO_ p2 +_~  + -~. (4.3) 
dz z=l 

Assuming that  the liquid medium contains N monodisperse bubbles of radius r~ we can write an 
expression for the volume of the two-phase medium in the form 

4 r(rO)3N, (4.4) v~  = vo + 5 

where V0 is the volume of the pure liquid component and N is such that  a0 < a0,. If the bubble radius 
increases to r I owing to a pressure drop, relation (4.4) takes the form 

V ~ = Vo + V1 = Vo + (4/3)~r/3N. 

It follows that  

dY ~ = dVo + (3/z)V1 dz. (4.5) 

With allowance for (4.3) and the relations ao = V1/V ~ and 1 - ao = Vo/V ~ we obtain from (4.1) and (4.5) 
an expression for the bulk modulus of a liquid containing bubbles: 

Ka = - V  ~ dP = - V ~  dP 
dV ~ dYo + (3/z) Yl dz (4.6) 

- V ~ d--P + -z ao d P ]  Iz=l = (1 - a 0 ) x 0  + 3 ( p 0  - P2)  + 4 7 / r  ~ ' ( 4 .6 )  
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where t0 = - ( l / V 0 ) d V o / d P  = 1/Ko is the compressibility coefficient of the pure liquid. 
Since a0 and r ~ are interrelated, for definiteness we express this relationship via the number 

concentration of bubbles n = N / V  ~ which is true in the absence of bubble coalescence in the process of 
stretching the medium. (This assumption is reasonable at least at the stage a0 < a0, when the volume is 
stretched monotonically.) From the condition niVi ~ = N = const, with allowance for (4.4) we have 

n,  = n j  = n j  + (4 /S)  + a o j  
�9 0 0 3  ~ Vo + (4/3) 7r(r~ = nj Vo/Vfl Jr ao,(r i / r j )  

or after aoj and nj are replaced by the initial quantities aoo and no, respectively, with allowance for ~9 = 

V~ - aoj), we have 

no 

ni = 1 + [(ri/ro) 3 - -  lla00' (4.7) 
where r0 and ri are the initial and current radii of the bubbles. 

Substituting the following expression, which was derived with allowance for (4.7), into (4.6): 

4 7rr~ no = aoo(ri/ro)S 
~o = aoi  = -~ 1 + [ ( r i / ro )  s - 1]a00 1 + [ ( r i / r 0 )  s - 1]~00 '  (4.S) 

we write 

3 -- Xo] ao~176 }, 
K a = l / ( x ~ 1 7 6  3{1+ ~ =  1]aoo} 

or substituting ri = ro{(1 - o t o o ) o t o i / [ ( 1  - a o i ) a o o ] }  1 /3  f r o m  (4.8), we determine the bulk modulus 

3a0i (4.9) 
1~'~ = (1 - a o i ) x o  + 3 ( p 0  _ P2 )  + ( 4 " r / r 0 ) [ a 0 0 ( 1  - a 0 i ) / a 0 i ( 1  - a 0 0 ) P / a  

for a bubble suspension in the range 0 ~< a0i < a0.. We find the condition under which this formula is 
applicable. Growth of bubbles in a volumetrically stretched liquid is a nonequilibrium process: The bubble 
radius and the pressure in the medium are not subject to condition (4.2), whereas Ka characterizes, by 
definition, the elastic properties of a medium with slight deviations of its volume from the equilibrium value. 
Therefore, in determining Ka (0 ~< aoi ~ a0.) using (4.9), one should consider this dependence for a spectrum 
of equilibrium states of the liquid medium, in each of which the bubble radii are related via (4.8) to a0i and 
the pressure in the liquid is subject to condition (4.2). 

A set of such model liquid samples containing bubbles with different values of a0i, which correspond 
to different stages of cavitation in a liquid medium being stretched, can be prepared under the condition of 
zero gravity [12], where the samples are able to retain their structure for at least 1 h (which is sufficient for 
experimental measurement of/Ca). It is noteworthy that if the pressure in the liquid matrix of a sample is 
p0 > 104 Pa, the bubble radii in a stably equilibrium state can take, for example, in the case of water, any 
values that satisfy the condition ri < 1.45 cm, according to (4.2). 

The stage a0. ~< a0 < 1. As we have already mentioned, when the concentration a0. is attained. 
the medium's structure becomes a cellular skeleton in the process of subsequent volume stretching. However. 
since the volume of the liquid component remains incompressible upon deformation of the cellular skeleton 
formed, the elastic elements of the mechanical model K1 and K2 (Fig. lb) are not deformed, and the model 
reduces to a two-component scheme that corresponds to a Voigt body: the elastic element Ka and the piston 
(1, which are connected in parallel. It is natural that condition (4.2) is not applicable at this stage, and hence 
the dependence (4.9) is not applicable either. 

For o0. ~< ~0 < 1, the modulus Ka must depend on the elasticity of the vapor-gas content (VGC) of 
the cells and also on the surface tension of the films separating these cells. We shall find the dependence of 
h'~ (a0. <~ a0 < l) on the macrorheological characteristics and geometric parameters of the cells. It is known 
[13] that the moduli of bulk and shear elasticity of the medium can be determined via the Lam~ coefficients 
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by writing the relation for the free energy of the medium and differentiating this relation with respect to the 
strain tensor. In this way, Stomenovic and Wilson [14] derived a relation for the bulk modulus of a foam in 
the form 

( d P )  2 S1 
K = - V  ~ ~ 0 - ~ 7 ~ - f f '  (4.10) 

where S1/V ~ is the ratio of the total surface of the cells to the foam volume in an unperturbed state, /5 is 
the VGC pressure in the cells, and V is the "perturbed" volume of the foam. Because the number of cells in 
the entire volume of the foam N remains unchanged in the process of deviation from the equilibrium state, 
denoting the "perturbed" and "unperturbed" volumes of the cells by V + and V ~ respectively, we have 
V = N V  + and V ~ = N V  ~ With allowance for this, we obtain 

d/5 (d/5)0 dP 
- V ~  (~-~)o = - - V  ~ (4.11) (dV)o/VO 

On the other hand, by virtue of conservation of the VGC mass of a cell V+/5 = V~ ~ where/~o and fi are 
the "unperturbed" and "perturbed" densities of the VGC, we have dV + = -V~176  2. Substituting this 
expression into (4.11), we obtain 

_V0(~_.~ ) = _ V 0 + (  ~2d/5 d/5 
0 - -  

where G'o is the velocity of sound in the VGC. With allowance for the last expression, Eq. (4.10) can be 
rewritten as 

K = ~0d02_ 2 $1 ~' ~-6" (4.12) 

To find the dependence of S1 /V  ~ on a0 and the dimensions of the cells, it is necessary to determine the 
geometry of the cells. Figure 3 shows a photograph of the structure of a water sample that is being stretched 
in a pulsed regime in the zone of an unloading wave according to the scheme described in [15]. This is a typical 
case of formation of a cellular structure, which shows that by virtue of the nonequilibrium character of the 
process, the cells have different dimensions, and the structure of the medium is irregular. Since, by definition, 
Ka characterizes the elasticity of the medium in the vicinity of a fixed equilibrium state, it seems expedient 
to choose a geometry of the cells that ensures minimum surface energy of the system, or values close to the 
minimum. 

Bearing the aforesaid in mind, we assume that for a0 ~ a0., the bubbles remain spherical (which 
is quite justified if the bubbles grow slowly; such growth is generally accepted within the framework of 
construction of the bulk modulus of the medium) and form, similarly to droplets in a concentrated emulsion 
[16], a structure that corresponds to packing in which a bubble is inscribed in a rhomboidal dodecahedron 
(RD), touching each face at one point (Fig. 4a) (all the faces of the RD are identical rhombuses). The 
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dodecahedrons form a densely packed system, as is shown by the dot ted curve in Fig. 4a. Since it is extremely 
complicated to describe exactly the process of continuous evolution of spherical bubbles to a cellular structure, 
the transition to the stage a0/> a0, can be performed as follows. 

We assume that  when the packing stage a0, is at tained, every bubble immediately takes the shape of 
an RD of the same volume (Fig. 4b). Then, since the RD volume is defined by the relation [16] 

V + = a31v~, (4.13) 

where a is the principal diagonal of the rhombus, from 47rr,a/3 = a3,/v/'2 we have 

~ ( a,  = r ,  = 1.8094r,. 4.14) 

Here and below, the asterisk denotes parameters that  correspond to the stage a0 = a0,.  If N is the number 
of RD cells, their specific surface is determined by the relation 

S ~  0 = S+NI(Vo + V+N),  (4.15) 

where, with allowance for the fact that  the smaller diagonal of a rhomboidal face of an RD (Fig. 4b) is 
b = a / v~ ,  the total surface of the RD faces is 

S + = 12ab/2 = 3V~a 2. (4.16) 

At the stage a0 /> a0, ,  all the liquid is concentrated in bridges between RD cells and, therefore, assuming 
them to be strictly regular in the medium's  volume (Fig. 4c), we write 

Vo = S+6N/2,  (4.17) 

where 6 is the thickness of the liquid bridges. From the definition of the volume concentration of the RD cells 
we have with allowance for (4.17) 

Vi+N [ s; al-' 
aoi = Vo + Vi+N = 1 + 2--VT+j 

Using (4.13) and (4.16), from the above relation we obtain 

6i - (1 - a0i) hi. (4.18) 
3aoi 

With (4.13) and (4.16)-(4.18) taken into account, relation (4.15) takes the form 

S O S+N aoi 
V0 - ~ + Vi+N = 6 ai (4.19) 

If the cells do not coalesce'while expanding during the process of volume stretching (this is quite 
likely with allowance for the "splitting" pressure in the bridges), then from the condition n,V,  ~ = n ,Vf  = 
N = const and also a0i = V~+N/Vi ~ Eq. (4.13), and the expression for the moisture content in the medium 

36 



~i = 1 - aoi = V0/V/~ we have 

v o v o + v . + N  
ni = n,  ~ = n,  Vo + Vi+ Y 

After that, using (4.13) and (4.20), we write 

3 3 1 + ( a i / a  , - 1)a0, 
(4.20) 

n,a~ 
a0i = Vi+ni = V~[1 + (a~/a3, -  1)a0,]" 

With allowance for n,  = n o , I V  + = V~ao,/a3, ,  it follows from the above expression that 

ai -'- a, r - ao,)aoi / (1 - aoi)ao,. (4.21) 

Replacing ai in (4.19) by ai from relation (4.21), with allowance for (4.14) and owing to the fact that the 
expressions a0, = 4rrr3,g/[3(Vo + 4rr,3N/3)] = aoor3,/[r3o(1 + aoor3,/r3o)] give 

, .  = ,0   /a0./ 00(1 - 

we obtain the specific surface of the cells versus their concentration: 

Therefore, after (4.22) is substituted into (4.12), we obtain the expression 

Ka(ao,  ~< a0i < 1 ) ~  ~0~,2_ 2__77 ~/x/~ a00( 1 ro V9~r - C~Oi ) a 2 i  . (4.23) 

Thus, from (4.9) and (4.23), we derive an expression that  determines the dependence of the bulk 
modulus of a liquid containing bubbles or a foam structure provided that the condition of stable equilibrium 

for 0 ~ ot0i < c~0,, 

(4.24) 

for ~0, ~ a0i < 1. 

for a two-phase medium is satisfied: 

Ka = 3(P ~ - P2) + 
r0 (1 - ~ 0 0 ) ~ 0 i  

~~ - 2-~-7 r  a o o ( 1 -  ~oi)agi 
ro 

Figure 5 shows dependences K,(aoi)  constructed by formula (4.24) for the case of a water matrix 
(7 = 72.3 g/sec 2 and Xo 1 = Ko(aoi = 0) = 2.18.109 Pa). For the VGC we chose C0 = 4.104 cm/sec, and 
the density t3 ~ was determined taking into account the equilibrium state of the cells (15 = p0). Curves 1-3 
refer to p0 = l0 s, 104, and 2 �9 10 s Pa, and the restriction imposed by the condition of stable equilibrium for 
monodisperse bubbles is roi ~< 5.10 -3 cm, which, according to (4.8), corresponds to aoi ~ 0.11; curve 4 refers 
to p0 = 0, and the relevant restriction is aoi <~ 6- 10 -6 (roi ~< 4- 10 -3 cm). 

Tile segments 0 ~< aoi <<. a0, and a0, ~< a0i < 1 of curves 1 and 2 do not coincide exactly for 
aoi = a0,, because in deriving the dependence Ka(aoi), a jumplike transition from a bubble structure to a 
cellular structure for the medium is assumed. The points on curve 1 denote values calculated according to an 
existing formula for the bulk modulus [13]. As applied to the case considered, this dependence is of the form 
K~ = p0(1 - aoi)C2o(aoi), where P0 is the density of the liquid; the velocity of sound in a bubble medium 
Co(aoi) was determined based on experimental data of [17]. 

Thus, according to Fig. 5, the bulk modulus of a bubble suspension depends strongly on the pressure in 
the liquid matrix. If the pressure is assumed to be equal to zero (curve 4), the bubble medium being stretched 
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can be considered a substance having no strength [9, 10]. However, in real processes, the atmospheric pressure, 
determining the bulk modulus of the medium, almost always acts on the expanding cavitating liquid volume. 
For example, the author and Chernobaev [18] have shown that if the value of the kinetic energy of a divergent 
flow of a cavitating liquid volume does not exceed a certain threshold value, the atmospheric counter pressure 
can lead to slowing down of the process of volume expansion of the medium and to collapse of bubble clusters. 

A second rheological parameter that depends on a0 is the effective bulk viscosity (1- But this 
dependence can be found using experimental techniques. 

5. We perform a qualitative analysis of the relaxation properties of a cavitating liquid, prescribing its 
instantaneous strain in the form 

where 

 v(t) = (5.1) 

0 for t < t l = 0 ,  d[U(t)] 
[u(0] 1 for t> t t t ;  dt 

and [6(t)] is the Dirac function. Substituting (5.1) into (3.4), with allowance for the properties of the 6 function 
we obtain the equation 

( 1  K o o - K .  1 )  1 
av + ~o + K o -  K= ~ &V + T--~gv = f(t) 

[~ K" ~otV(~)]+ ( ~~ ~ - ~ "  ~" ) d ] 
(t) - ToT1 T o  + Ko - K .  ~ r [6(t)] + Koor ~-~ [5(t)] , 

the general solution of which has the form 

eo[U(t)] [( K. Ko Koo- K. K. )eX,  ' 
av(t) = K~r + X, - X2 ToTTXI + ~o + Ko - K~ 7'I + KooX, 

( Ka Ko Koo-KaK= ) ] 
ToTTX2 + ~ + Ko - K= ~ + goox2 e x2e �9 (5.2) 

Here 

X, = --~ ~oo + 7"i g o - K =  ' - 2  ~oo + TI g o -  K. 

~ 1 1 ( K o o - K , ~  2 2 Koo+K, , -2Ko (5.3) 
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According to (5.2) and (5.3), we have 

KooE0 for t ---* +0, 
~rv(t) ~ Kay0 for t ~ ~ ,  

i.e., the tensile stress decreases with t ime to a constant value: a relaxation process occurs in the medium, 
which corresponds to the mechanical model of the medium (see Fig. 2). 

The relaxation t ime of tensile stresses T is found from the condition 

av(t  = T) = av(t = 0)/e (e = 2.71828). (5.4) 

Substituting (5.4) into (5.2), we have 

( K ,  Ko K o o - K a K a  ) e X ,  T 
+T0 + K0-K. T1 +KooXl 

) - ToT1X2 +'~o + K o - K ,  T-~I + g ~ 1 7 6  = - g ,  ( X 1 - X 2 ) ,  (5.5) 

where XI and X2 are calculated from (5.3) with allowance for To = r - Ko) and 7"1 = (l/(Koo - IQ). 
To determine T in this way, we have to know numerical values of the theological parameters of the medium 
that enter (5.4) and (5.5). Here Koo, K0, and C0 are, as a rule, known for most liquids, and Ka(a0) can be 
calculated by formula (4.24). But the determination of C0 from (1.1) in the entire range of a0 seems to be 
incorrect, because for a0 = a00 ~ 0, Eq. (1.1) has a singularity in the approximation of an incompressible 
matrix, the shape of the bubbles deviates from spherical for large initial values a0 = a00, and their interaction 
should be taken into account, which is not envisaged in deriving formula (1.1). We note that  for a00 = 10 -4 
and r0 = 10 -s  cm, the value of T calculated from (5.5) with allowance for (1.1), (4.24), and (5.3) is equal to 
1.8.10 -s  sec, which is very close to the result reported in [8], where T = 0.63.10 - s  sec. 

In view of this, the next step in work on the development of physical and mathematical  models of a 
cavitating liquid med ium being stretched is the creation of theological methods that  would allow one to find 
empirical dependences of the rheological parameters of the medium,  including ~1, on a0 and the strain rate 
of the medium. 

This work was suppor ted by the Russian Foundation for Fundamental  Research (Grant No. 96-01- 
01772). 
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